Yara Parser: A Fast and Accurate Dependency Parser

نویسندگان

  • Mohammad Sadegh Rasooli
  • Joel R. Tetreault
چکیده

Dependency parsers are among the most crucial tools in natural language processing as they have many important applications in downstream tasks such as information retrieval, machine translation and knowledge acquisition. We introduce the Yara Parser, a fast and accurate open-source dependency parser based on the arc-eager algorithm and beam search. It achieves an unlabeled accuracy of 93.32 on the standard WSJ test set which ranks it among the top dependency parsers. At its fastest, Yara can parse about 4000 sentences per second when in greedy mode (1 beam). When optimizing for accuracy (using 64 beams and Brown cluster features), Yara can parse 45 sentences per second. The parser can be trained on any syntactic dependency treebank and different options are provided in order to make it more flexible and tunable for specific tasks. It is released with the Apache version 2.0 license and can be used for both commercial and academic purposes. The parser can be found at https: //github.com/yahoo/YaraParser.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Engineering in Persian Dependency Parser

Dependency parser is one of the most important fundamental tools in the natural language processing, which extracts structure of sentences and determines the relations between words based on the dependency grammar. The dependency parser is proper for free order languages, such as Persian. In this paper, data-driven dependency parser has been developed with the help of phrase-structure parser fo...

متن کامل

تولید درخت بانک سازه‌ای زبان فارسی به روش تبدیل خودکار

Treebanks is one of important and useful resource in Natural Language Processing tasks. Dependency and phrase structures are two famous kinds of treebanks. There have already made many efforts to convert dependency structure to phrase structure. In this paper we study an approach to convert dependency structure to phrase structure because of lack of a big phrase structure Treebank in Persian. A...

متن کامل

A Fast, Accurate, Non-Projective, Semantically-Enriched Parser

Dependency parsers are critical components within many NLP systems. However, currently available dependency parsers each exhibit at least one of several weaknesses, including high running time, limited accuracy, vague dependency labels, and lack of nonprojectivity support. Furthermore, no commonly used parser provides additional shallow semantic interpretation, such as preposition sense disambi...

متن کامل

It Depends: Dependency Parser Comparison Using A Web-based Evaluation Tool

The last few years have seen a surge in the number of accurate, fast, publicly available dependency parsers. At the same time, the use of dependency parsing in NLP applications has increased. It can be difficult for a non-expert to select a good “off-the-shelf” parser. We present a comparative analysis of ten leading statistical dependency parsers on a multi-genre corpus of English. For our ana...

متن کامل

ارائۀ راهکاری قاعده‌مند جهت تبدیل خودکار درخت تجزیۀ نحوی وابستگی به درخت تجزیۀ نحوی ساخت‌سازه‌ای برای زبان فارسی

In this paper, an automatic method in converting a dependency parse tree into an equivalent phrase structure one, is introduced for the Persian language. In first step, a rule-based algorithm was designed. Then, Persian specific dependency-to-phrase structure conversion rules merged to the algorithm. Subsequently, the Persian dependency treebank with about 30,000 sentences was used as an input ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1503.06733  شماره 

صفحات  -

تاریخ انتشار 2015